
(Gestures Vaguely): The Effects of Robots’ Use of Abstract 
Pointing Gestures in Large-Scale Environments 

Annie Huang∗ Alyson Ranucci* Adam Stogsdill* 
Colorado School of Mines Colorado School of Mines RAIsonance 

Golden, CO, USA Golden, CO, USA Greenwood Village, CO, USA 
anniehuang@mines.edu aranucci@mines.edu adam.stogsdill@gmail.com 

Grace Clark Keenan Schott Mark Higger 
Colorado School of Mines Colorado School of Mines Colorado School of Mines 

Golden, CO, USA Golden, CO, USA Golden, CO, USA 
clarkgrace18@gmail.com keenanschott@mines.edu mhigger@mines.edu 

Zhao Han Tom Williams 
University of South Florida Colorado School of Mines 

Tampa, FL, USA Golden, CO, USA 
zhaohan@usf.edu twilliams@mines.edu 

ABSTRACT 
As robots are deployed into large-scale human environments, they 
will need to engage in task-oriented dialogues about objects and 
locations beyond those that can currently be seen. In these con-
texts, speakers use a wide range of referring gestures beyond those 
used in the small-scale interaction contexts that HRI research typi-
cally investigates. In this work, we thus seek to understand how 
robots can better generate gestures to accompany their referring 
language in large-scale interaction contexts. In service of this goal, 
we present the results of two human-subject studies: (1) a human-
human study exploring how human gestures change in large-scale 
interaction contexts, and to identify human-like gestures suitable 
to such contexts yet readily implemented on robot hardware; and 
(2) a human-robot study conducted in a tightly controlled Virtual 
Reality environment, to evaluate robots’ use of those identified 
gestures. Our results show that robot use of Precise Deictic and 
Abstract Pointing gestures afford different types of benefits when 
used to refer to visible vs. non-visible referents, leading us to for-
mulate three concrete design guidelines. These results highlight 
both the opportunities for robot use of more humanlike gestures in 
large-scale interaction contexts, as well as the need for future work 
exploring their use as part of multi-modal communication. 
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1 INTRODUCTION 
Suppose that while talking to a colleague in your office, you were 
to mention that HRI 2024 was to be held in Boulder, Colorado. 
Even if you knew quite well the general direction that Boulder 
was from your current location, you would probably not turning 
to face Boulder, extend your arm precisely, and gaze intently at 
your office wall. Instead, you would likely wave your hand as if 
to say “elsewhere” – a purely abstract gesture not intended to be 
followed or used to establish joint attention. On the other hand, if 
you were to talk to your colleague about an object in front of you 
(perhaps a craft beer from Boulder, Colorado), you would likely not 
gesture vaguely, but instead use a deictic gesture like pointing or 
presenting, gaze at your referent directly, and perhaps even actively 
check to ensure your interlocutor was following your gaze and 
gesture, thus establishing shared attention. 

In many cases, human selection of gestures to accompany refer-
ring expressions may be straightforward due simply to the limi-
tations of human cognition. In many cases, unless we can see an 
object, or have a landmark such as mountains or a coastline to 
ground our sense of direction toward a far-off location, we have lit-
tle to no idea of the heading along which target referents lie, and we 
would be unable to precisely gesture towards most referents with-
out seconds or minutes of careful deliberate thought and geometric 
reasoning. As recent work on human-human gesture has demon-
strated, this leads to a wide array of referring gestures being used 
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beyond precise deictic pointing, even in relatively small-scale inter-
action contexts with only modest environmental occlusion [27]. 

Robots, on the other hand, are not under the same limitations, 
and may in fact have precise metric knowledge of objects and 
locations that are not currently visible and potentially quite far 
away. In such cases, from the robot’s perspective, a deictic gesture 
would be easy to generate, even though it would likely be hard to 
interpret and potentially confusing for human interlocutors. This 
disconnect is increasingly important as robots are moved from 
small-scale interaction contexts in which all candidate referents 
are readily visible, into large-scale interaction contexts where most 
referents are not currently visible, like hospitals, shopping malls, 
and other large-scale public environments. 

As such, we argue that for robots to effectively and naturally 
use referring gestures in realistic, large-scale human environments, 
robots’ nonverbal behaviors must be designed with sensitivity to 
what humans find to be natural, humanlike, and understandable in 
those large-scale contexts. In service of this goal, we make two key 
contributions in this work. First, we present the results of a human-
human study conducted to understand how human gestures change 
as referring context expands, and to identify human-like gestures 
suitable to large-scale interaction contexts. Second, we present the 
results of a human-robot study conducted in a tightly controlled Vir-
tual Reality environment, to evaluate robots’ use of those identified 
gestures in large-scale interaction contexts. Our results from both 
ethics board approved studies show that robot use of Precise Deictic 
and Abstract Pointing gestures afford different types of benefits 
when used to refer to visible vs. non-visible referents, leading us to 
formulate three concrete design guidelines. These results highlight 
both the opportunities for robot use of more humanlike gestures 
in large-scale interaction contexts, and the need for future work 
exploring their use as part of multi-modal communication. 

2 RELATED WORK 

2.1 Human Gesture 
Gestures are one of the most important channels used in human-
human communication. They allow listeners to better understand 
the meaning and intentions behind speakers’ utterances, both in 
typical dialogue and in contexts in which words cannot be used or 
in which interlocutors speak different languages [35, 53]. Gestures 
are especially useful in such contexts due to their visual nature; 
as Kendon [35] argues, gesture allows speech to convey additional 
mental imagery that persists even once the speaker has finished 
speaking. Moreover, the use of gestures plays a significant role in 
the gesturer’s cognition [21], enabling speakers to work through and 
better articulate concepts, even if they are unable to see the gestures 
they are making [32]. Gestures are particularly common when a 
speaker is referencing spatial information [3], in part because of 
gestures’ utility as a visuospatial information channel that can be 
used to supplement non-visuospatial speech [40]. 

As delineated by McNeill [40] human gestures can be divided 
into five main categories: deictics (which help pick out physical 
referents), iconics (which resemble physical shapes), metaphorics 
(which represent more abstract concepts), cohesives (abstract ges-
tures used to metaphorically connect narrative elements), and beats 
(which do not reflect concepts, but instead provide emphasis and 

reflect tempo). While categories like iconics, which directly depict 
figural representations, most literally convey mental imagery, each 
of these categories conveys imagery or visuospatial information in 
some way. Deictic gestures like pointing, presenting, and sweeping, 
are particularly effective at conveying spatial information, and are 
often used during tasks with significant spatial components, such 
as giving directions [4] or describing room layouts [48]. 

But moreover, deictic reference, whether in the form of deic-
tic language, gaze, or gesture, is a critical part of situated human-
human communication [38, 41]. Deixis is one of the earliest forms of 
communication both anthropologically and developmentally. Begin-
ning around 9-12 months, humans learn to point during speech [6], 
with mastery of deictic reference attained around age 4 [14]. Be-
cause deictic gestures allow speakers to pick out referents without 
using language (similar to how other gesture types allow commu-
nicators to express more abstract meanings not grounded to the 
environment), they are a robust technique for language learning. As 
a result, language development changes can be predicted through 
developmental changes in humans’ deictic gestural skills [33]. Fur-
thermore, humans continue to rely on the use of deictic gestures 
long past infancy as a major communicative skill due to its use-
fulness as a referential strategy in complex environments, such as 
noisy work environments [26], that require (or at least benefit from) 
more communication channels beyond speech [15, 19, 20, 22, 34]. 

Historically, deictic gesture has typically been studied in small-
scale interaction contexts where humans must refer to visible ob-
jects, locations, and people. But as Enfield et al. [16] demonstrate in 
their study of referring language used in Laotian villages, a wider 
range of referring gesures can be observed if we consider larger in-
teraction contexts. Enfield et al. [16], for example, highlight the use 
of “Big” points comprised of large full-arm gestures (used to point 
to specific locations in space) versus “Small” points with smaller 
movements and more complex hand movements (used to help re-
solve particularly ambiguous referents and refer to entities not 
currently visible). Recently, researchers have begun to more care-
fully analyze referring gestures used in other large-scale interaction 
contexts. For example, Higger et al. [27] recently presented a new 
taxonomy of referring gestures comprised of five distinct categories: 
three different types of deictic gestures used to achieve varying 
levels of disambiguation, a category of iconic gestures used for 
referring purposes, and a category of “Abstract Pointing” gestures 
comprised of non-deictic pointing gestures (e.g., pointing vaguely 
in some direction that may or may not actually lead towards the 
target referent). While this taxonomy captures the types of gestures 
used by humans to refer to non-visible objects, however, it does not 
explain the criteria that speakers use when deciding between ges-
tures. Moreover, no work yet considers how these different forms 
of referring gestures might be deployed in human-robot interaction. 

2.2 Robot Deictic Gesture 
There is a long history of work on robot gesture generation in 
the Human-Robot Interaction community. In particular, due to 
the situated nature of human-robot communication, deictic ges-
tures have been especially extensively studied in the HRI literature, 
including deictic gestures used to refer to objects in tabletop in-
teractions [46, 47], deictic gestures used to refer to larger spatial 
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regions [13] and during direction-giving [42]. Deictics have been of 
particular interest in the context of situated, task-oriented human-
robot communication. Robots’ use of deictic gesture is effective 
at shifting attention in the same way as humans’ use of deictic 
gesture [10], and robots’ use of deictic gesture improves both sub-
sequent human recall [31] and human-robot rapport [7]. Research 
has also shown that robots’ use of deictic gesture is especially effec-
tive when paired with other nonverbal signaling mechanisms [12], 
such as deictic gaze, in which a robot (actually or ostensibly) shifts 
its gaze towards its intended referent [1, 2, 13], and that this is 
especially effective when gaze and gesture are appropriately co-
ordinated [44]. All of these findings suggest that deictic gesture 
is a critical component across a wide breadth of pro-social HRI 
contexts, such as healthcare contexts (where researchers aim to 
reduce inequities in communities’ health-related capabilities) and 
education contexts (where researchers aim to reduce inequities in 
communities’ capabilities to sense, think, imagine, and play)[57]. 

Accordingly, these findings have motivated a variety of tech-
nical approaches for deictic gesture generation [29, 45, 52] and 
for integrating gesture generation with natural language gener-
ation [17, 18, 43, 50]). Recent work has even shown how robot 
gestures may be generated through interactive modalities like Aug-
mented Reality [11, 23, 25, 49, 55] to unique effect. As in the human-
human interaction literature, however, there has been little atten-
tion to referring gestures beyond precise deictic pointing. 

2.3 Robot Abstract Gesture 
Most research on abstract robot gestures focuses on beat gestures [9], 
iconic gestures [8, 30], and metaphoric gestures [30]. Many of these 
approaches have also looked at joint generation of deictic and ab-
stract gestures [30, 31]. Yet these approaches have typically ignored 
the ways that abstract gestures might be used as part of referential 
communication in the way that deictic gestures are. 

This may be due in part to the interaction contexts typically used 
in HRI research, in which a limited, finite, and visible set of objects 
are assumed to be under discussion, all of which can be assumed 
to be known to both human and robot, and which are typically 
located immediately in front of the robot or are at least visible in 
the environment (e.g., on a table [1, 2, 17, 28, 47] or screen [30], 
[cp. 42]). In such cases, the most natural gesture to accompany 
spatial language is a precise deictic pointing gesture, where the 
robot points and gazes directly at an object to allow interlocutors 
to achieve joint attention by following the robot’s gesture and gaze. 

In realistic task contexts, however, the space of possible objects is 
not limited to a finite set. As highlighted in work targeting linguistic 
reference understanding [54, 56], robots must also understand and 
generate references to objects and locations that are not currently 
visible (or in fact that may never have been seen or heard of before). 

Based on the literature described above, there are at least two key 
research aims that will be critical for the HRI community to pursue 
as robots are deployed into larger-scale environments than those 
traditionally examined in laboratory-based HRI research. First, cog-
nitive scientists must work to understand the factors that determine 
when and why humans typically use the different types of referring 
gestures delineated within Higger et al. [27]’s recent taxonomy. 
And second, roboticists must use those insights to design more 

humanlike gestures for use by robots in large-scale interaction 
contexts, and work to understand the objective performance and 
subjective perception of those gestures. As cognitive scientists and 
roboticists, we thus work to advance both research aims. 

3 EXPERIMENT ONE 
In our first study, we seek to answer our first key research question: 
(RQ1) When and why do humans use different types of referring 
gestures? To answer this question, we conducted an exploratory 
study following a within-subjects design. 

3.1 Method 
To investigate this research question, we designed a spatial refer-
ence task in which participants sequentially referred to a series of 
familiar objects and locations. The objects included in this list con-
tained objects clearly visible in the experiment room, common land-
marks within the building housing the experiment, other nearby 
buildings and landmarks, and commonly known US cities. The dis-
tribution of objects and locations in this set roughly followed a 
negative exponential curve, with many nearby referents included 
and few distant referents included. 

Experimental participants engaged in this task in a dyadic con-
text, in which the participant sat across from the experimenter, 
and was sequentially asked by the experimenter to describe the 
location of each object or location, with the experimenter only 
referring to each target by proper name (i.e., without themselves 
using any gaze or gestural behaviors or describing the target in any 
way). When referring to the objects, the participants were required 
to refer to them verbally but were not required to use gestures. If 
participants asked for clarification on how to describe an object, 
they were encouraged to describe the location of the object in the 
way that made the most sense to them. 

Participants’ gestural behaviors were videotaped using RGB and 
RGB-D cameras. All videos were coded by a primary rater, who cat-
egorized the gestures accompanying participants’ spatial referring 
expressions as either more precise, more abstract, or absent. Here, 
deictic gestures such as pointing, sweeping, and presenting were 
categorized as more precise (cp. [47]), and all other gestures (in-
cluding metaphoric, abstract, and beat gestures) were categorized 
as more abstract. When categorization was unclear, coding was 
determined through consultation with a secondary rater. Whenever 
a participant indicated that they were unfamiliar with one of the 
referents to be described, we removed their data for that referent. 
Moreover, two objects were removed completely from our analysis 
because the majority of participants were unfamiliar with their 
location. The remaining data is visualized in Fig. 1 

Fourteen participants were recruited from a mid-sized US college 
campus to participate in this exploratory experiment. This produced 
a dataset of 254 recorded descriptions. Participants were paid $5 
each for their participation. Examples of gestures coded as more 
precise vs. more abstract are shown in Fig. 2. 

3.2 Analysis 
After completing data collection, a Bayesian analysis was performed 
to understand the role of two key factors (referent visibility and 
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Figure 1: Gestures used in Experiment One. Target referents 
are ordered from left to right in increasing order of distance. 
A dramatic drop in the use of more precise gestures is ob-
served for referents sufficiently far away to be no longer 
visible (i.e., those of rank eight and above), after which more 
abstract gestures are typically used, with a negative trend 
from that point onward in the use of more precise gestures. 

Figure 2: Participant gestures coded as More Precise (left) 
and as More Abstract (right) in Experiment One. 

referent distance) in predicting interactants’ use of more abstract 
versus more precise referring gestures. 

The Bayesian approach has several advantages [51] over the 
Frequentist approach although it is not yet as commonly used. Key 
advantages of this framework include (1) the ability to gather evi-
dence in favor of the null hypothesis and, more generally, quantify 
the evidence for and against competing hypotheses; (2) the ability to 
engage in flexible sampling plans, e.g., to “peek” at data before sam-
pling has concluded and use this to make decisions as to whether 
or not to continue collecting data. 

We used the brms R package to fit and compare a series of General 
Linear Mixed Models, each with a different combination of distance 
to target referent (a log-scale continuous variable measured in feet), 
target referent visibility (a binary variable), and speaker (a categori-
cal variable to account for individual differences) to predict gesture 
type (a categorical variable). All models used the logistic function as 
the model link function. After fitting these models, Bayes Inclusion 

Factors Across Matched Models were calculated [39] to quantify 
the relative evidence for inclusion versus noninclusion of each of 
these two factors and their potential interaction. 

Here, Bayes Factors 𝐵𝐹 represent the ratio of evidence between 
the two competing hypotheses H1 and H0. For example, 𝐵𝐹10 = 5 
means that the data collected is 5 times more likely to occur under 
H1 than under H0. To interpret the results of our Bayes Factor anal-
yses, we used the widely accepted interpretation scheme proposed 
by Lee and Wagenmakers [37]. Under this approach, evidence is con-
sidered anecdotal (inconclusive) for 𝐵𝐹 ∈ [1/3, 3], moderate when 
𝐵𝐹 ∈ [3, 10] (or when 𝐵𝐹 ∈ [1/3, 1/10]), strong when 𝐵𝐹 ∈ [10, 30] 
(or when 𝐵𝐹 ∈ [1/10, 1/30]), very strong when 𝐵𝐹 ∈ [30, 100] (or 
when 𝐵𝐹 ∈ [1/30, 1/100]), and extreme when 𝐵𝐹 ∈ [100, ∞] (or 
when 𝐵𝐹 ∈ [−∞, 1/100]). 

3.3 Results 
Our results suggest that both visibility and distance are important 
for choosing whether and how to gesture when generating spa-
tial referring expressions. Specifically, our Bayes Factor analysis 
suggests that while it is unlikely but uncertain whether distance 
directly informs referring gesture use (BF = 0.488, i.e., based on 
our data, it is about twice as likely that there is no main effect of 
distance on gesture use than that there is such a main effect), we can 
conclusively state that visibility directly informs referring gesture 
use (BF = 276,368, i.e., based on our data, it is over 250,000 times 
more likely that there is a main effect of visibility on gesture use 
than that there is no such effect). Moreover, our evidence allows us 
to conclusively state that distance and visibility interact to jointly 
inform gesture use (BF = 116, i.e., based on our data, it is over 100 
times more likely that distance and visibility interact to jointly 
inform gesture use than it is that they do not). 

Specifically, we observed that speakers were far more likely 
to use more precise gestures when their target was visible than 
when it was not (with 87.6% of the 97 visible referent descriptions 
using more precise gestures vs only 13.4% of the 157 non-visible 
referent descriptions using more precise gestures), and that when 
target referents were not visible, speakers became increasingly less 
likely to use more precise gestures and more likely to use more 
abstract gestures as their targets grew increasingly far away (with, 
for example, 22.2% of descriptions using more precise gestures and 
51.9% of descriptions using more abstract gestures for referents at 
a distance of 12 feet, vs 7.1% of descriptions using more precise 
gestures and 71.4% of descriptions using more abstract gestures for 
referents at a distance of 270 feet). 

The results of this experiment suggest a clear, simple policy for 
robot gesture design. While distance did play a factor in humans’ 
choice of gestures, this effect was only in the relative frequency 
of more precise gestures as a minority class in those instances 
where most people chose to use a more abstract gesture due to 
referent non-visibility. As such, at least within environments like 
those examined where all objects of at least moderate distance are 
also occluded, robots may simply use more precise gestures for 
visible objects, and more abstract gestures for non-visible objects. 
To test the actual efficacy of such a policy, a second experiment 
was designed and conducted. 
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4 EXPERIMENT TWO 
In our second experiment we seek to answer our second key re-
search question: (RQ2) How do human-like referring gestures de-
signed for large-scale interaction contexts (i.e., modeled on the 
more precise and more abstract gestures observed in Experiment 
One) objectively perform, and how are they subjectively perceived? 

Specifically, we aimed to test four key hypotheses: 
Hypothesis 1 (H1) — Abstract Pointing gestures will be objec-

tively more effective in referring to non-visible objects; Precise 
Deictic gestures will be objectively more effective in referring to 
visible objects. 

Hypothesis 2 (H2) — Abstract Pointing gestures will be per-
ceived as more human-like when referring to non-visible objects; 
Precise Deictic gestures will be perceived as more humanlike when 
referring to visible objects. 

Hypothesis 3 (H3) — Abstract Pointing gestures will be per-
ceived as more natural when referring to non-visible objects; 
Precise Deictic gestures will be perceived as more natural when 
referring to visible objects. 

Hypothesis 4 (H4) — Abstract Pointing gestures will be per-
ceived as more understandable when used to refer to non-visible 
objects; Precise Deictic gestures will be perceived as more under-
standable when referring to visible objects 

4.1 Method 
4.1.1 Experimental Design. To test our hypotheses, we conducted 
a human-subjects study with two within-subject factors (Gesture 
Type and Referent Visibility) that also controlled for a three-way 
nuisance factor (Referent Direction), yielding a 2 × 2 × 3 within-
subjects Latin Square design. 

The two Gesture Type conditions involved gestures of two differ-
ent types: Precise Deictic (Fig. 3) and Abstract Pointing (Fig. 4). The 
two Referent Visibility conditions involved gestures toward objects 
that either were or were not visible to the user and robot. To control 
for effects of perspective, the three Referent Direction conditions 
involved gestures delivered towards objects in different directions 
with respect to the robot. 

These category combinations were explored in a task environ-
ment containing six different objects, three of which were visible, 
and three of which were non-visible, organized into pairs of objects 
at nearly identical trajectories from the robot: two to the robot’s 
left (one within the room and one outside the room), two to the 
robot’s right, and two behind the robot. 

Within this environment, the robot could thus point in one of 
three directions (ostensibly to one of six objects) using two different 
gesture types. To counterbalance participants’ exposure to these 
six possible gestures, we designed a 6 × 6 balanced Latin Square of 
observable gestures. This produced a six-line table of condition se-
quences to which participants were randomly assigned. Meanwhile, 
the referent visibility factor was counterbalanced within-subjects 
using a repeated measure described later on. 

4.1.2 Materials and Apparatus. To allow for more fine-grained 
control over our experimental environment and allow for the use 
of gestures that our physical robot platforms were not capable 
of (i.e., due to Pepper’s lack of individually articulable fingers), 
our experiment was conducted in Virtual Reality (VR). Previous 

work suggests that physical and virtual robot gestures are perceived 
nearly identically [25], suggesting high potential for generalizability 
from virtuality to live interactions for the research questions we 
examined. For each of the six gestures described above (in one of the 
three directions using one of the two gesture types), we recorded a 
4K 360°video showing a Softbank Pepper robot with fully articulable 
hands referring to a condition-determined sequence of six objects. 

In these videos, Pepper performed Precise Deictic gestures by 
extending a straightened arm with its index finger pointed toward 
its target referent. While performing this gesture, Pepper’s head 
turned to the object, not turning back until the gesture was com-
plete. In contrast, Pepper performed Abstract Pointing gestures by 
extending an arm bent at the elbow, with an open palm oriented 
face up in the direction of the target referent. While performing this 
gesture, Pepper’s head briefly turned in the direction of the target 
object before immediately turning back towards the participant. 

To show the pre-recorded 360° videos of these gestures to par-
ticipants, we used a Meta Quest 2 HMD: A commercial-grade VR 
headset that has an 1832 × 1920 LCD display per eye. 

To facilitate replicability and reproducibility, all experiment ma-
terials, including videos with the Blender rendering file, question-
naires, Latin Square table, and data analysis, are available on Open 
Science Framework (OSF) at https://osf.io/nk4c7/. 

4.1.3 Procedure. After providing informed consent, demographic 
information, and being instrumented with a VR headset, partici-
pants watched three tutorial videos on how to comfortably wear 
the headset, how to use its controller, and how to complete surveys 
within the VR headset. Experimenters proactively helped partici-
pants when needed and answered any clarification questions. 

Each participant was then assigned to one of the six condition 
sequences, and watched the series of six 360° VR videos determined 
by that condition sequence. Before each video, participants were 
shown the map depicted in Fig. 5, and asked to familiarize them-
selves with it. Then, as defined by the experimental design, the 
participant watched one of the six videos determined by their as-
signed condition. Finally, participants were shown the map depicted 
in Fig. 5 again, and were asked which of the objects in the scene 
they believed the robot was referring to. 

After viewing all six videos, participants were told to imagine 
that the robot had actually been referring to objects inside (or 
outside, for 50% of participants) the room. They were then asked to 
rewatch all six videos under this presumption, and after rewatching 
each video, were asked to evaluate the robot’s gesture on the basis 
of how humanlike, natural, and understandable it was to them as 
a gesture towards the relevant object inside (or outside) the room. 
Finally, after rewatching all six videos, participants were told to 
re-imagine that in fact the robot had been referring to objects on 
the opposite side of the wall than they were previously told. They 
were then asked to rewatch all six videos for a third time under this 
opposite presumption, and re-rate the robot’s gestures. 

All experimenters followed an oral script to ensure consistency 
in experiment instructions. It took 40.5 minutes on average for 
participants to finish the whole study. 

4.1.4 Measures. To test our four hypotheses, four measures were 
used as noted above, to separately assess effectiveness, humanlike-
ness, naturalness, and understandability. 
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Figure 3: Pepper using a Precise Deictic gesture to refer to 
a visible object (the green cone). The robot stayed turned at 
the object with sustained gaze. 

Figure 4: Pepper using an Abstract Pointing gesture to refer 
to one of the three non-visible objects (the blue cube beyond 
the rightmost wall in Fig. 5). The robot briefly glanced at the 
object and turned back. 

Figure 5: A top-down of the VR task environment. The Pepper 
robot was placed in the bottom center of the room, in front 
of the user. The environment contains three visible objects 
inside the wall and three non-visible objects outside. 

Effectiveness was measured by assessing whether participants’ 
guesses at the intended target of each robot gesture would have 
been correct under a policy in which Abstract Pointing gestures are 
used to refer only to non-visible objects, and Precise Deictic gestures 
are used to refer only to visible objects. This thus represents not 
the participant’s effectiveness, but rather the effectiveness that that 
hypothetical gesture policy would have facilitated. 

Humanlikeness was measured using the 5-point Godspeed An-
thropomorphism Scale [5]. 

Naturalness was measured using a 5-point Likert item asking 
participants how natural the robot’s gesture was. 

Understandability was measured using a 5-point Likert item 
asking participants how understandable the robot’s gesture was. 

4.1.5 Analysis. Our data were analyzed using Bayesian Repeated 
Measures Analyses of Variance (RM-ANOVAs) with Bayes Factors 
calculated across matched models [39], using JASP 0.18. 

4.1.6 Participants. 34 participants were recruited from Colorado 
School of Mines. Of these, 13 (38.23%) identified as women, 19 
(55.88%) identified as men, and 2 did not wish to disclose their 
gender. For racial identity, 18 identified as White (52.94%), 8 as Asian 
(23.53%), 3 as belonging to more than one racial group (8.824%), 
1 as Latino (2.941%), and 4 chose not to disclose. Participant ages 
ranged from 18 to 41 (M=22.73, SD=5.69). 20 reported familiarity 
with robots, 6 were neutral, and 8 reported being unfamiliar with 
robots. 13 reported being familiar with virtual reality, 4 reported 
neutral experience, and 17 were unfamiliar with virtual reality. Each 
was given a $15 Amazon gift card for their participation. 

4.2 Results 
4.2.1 Effectiveness. A repeated measures Analysis of Variance 
(RM-ANOVA) revealed extreme evidence for an effect of Gesture 
(𝐵𝐹10 = 1.190 × 105). As shown in Fig. 6, when the robot used 
a precise deictic gesture, around 80% of participants (𝑀 = 79.4, 
𝑆𝐷 = 18.4) believed the robot was talking about something that 
was visible (whereas around 20% of participants thought it was 
talking about something non-visible). Meanwhile, when the robot 
used an Abstract Pointing gesture, only around 40% of participants 
(𝑀 = 43.1, 𝑆𝐷 = 33.4) believed the robot was talking about some-
thing non-visible (while around 60% of participants thought it was 
talking about something visible). This suggests that using Precise 
Deictic gesture is indeed the most effective way to refer to some-
thing visible (as 80%>60%), and that using Abstract Pointing gesture 
is indeed the most effective way to refer to something non-visible 
(as 40%>20%), but that on the other hand, using gesture alone is 
unlikely to be a strong enough signal to pick out a non-visible 
object due to a (very reasonable) interpretation bias toward visible 
objects. These results thus supports H1 (while highlighting that an 
expectation of relying on gesture alone is, perhaps, unrealistic). 

298



(Gestures Vaguely): The Effects of Robots’ Use of Abstract Pointing Gestures in Large-Scale Environments HRI ’24, March 11–14, 2024, Boulder, CO, USA 

Abstract Deictic 
0% 

25% 

50% 

75% 

100% 

Ac
cu

ra
cy

 

Figure 6: Objective effectiveness. Error bars in this and all 
later charts show a 95% credible interval. Results show that 
while Abstract Gestures are not readily interpreted on their 
own, using Precise Deictic gestures to refer to visible objects 
and using Abstract Pointing gestures to refer to non-visible 
objects is the best policy given our data. 
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Figure 7: Anthropomorphism. Results show a difference be-
tween Precise Deictic and Abstract Pointing gestures towards 
non-visible objects. 

4.2.2 Anthropomorphism. A two-way repeated measures Analysis 
of Variance (RM-ANOVA) revealed strong evidence for an effect of 
Gesture (𝐵𝐹10 = 22.199). As shown in Fig. 7, participants viewed 
robots that used Abstract Pointing gestures as more humanlike 
(𝑀 = 3.427, 𝑆𝐷 = 0.735) than robots that used Precise Deictic 
gestures (𝑀 = 3.124, 𝑆𝐷 = 0.861). 

This RM-ANOVA also revealed moderate evidence against an 
effect of Referent Visibility (𝐵𝐹10 = 0.251). 

Finally, this RM-ANOVA revealed moderate evidence in favor 
of an interaction between Gesture and Referent Visibility (𝐵𝐹10 = 
5.059). Specifically, post-hoc Bayesian t-tests revealed that the dif-
ference in ascriptions of humanlikeness for Abstract Pointing vs 
Precise Deictic gestures was very strong for gestures to non-visible 
objects (𝑀𝐴 = 3.496, 𝑆𝐷𝐴 = 0.655 vs. 𝑀𝐷 = 3.082, 𝑆𝐷𝐷 = 0.838; 
𝐵𝐹10 = 80.733) but that there was actually only anecdotal evidence 
against such a difference for gestures to visible objects (𝑀𝐴 = 
3.359, 𝑆𝐷𝐴 = 0.814 vs. 𝑀𝐷 = 3.165, 𝑆𝐷𝐷 = 0.883; 𝐵𝐹10 = 0.693). 
These results partially support H2: Abstract Pointing gestures were 
perceived as more humanlike when referring to non-visible objects, 
but no such benefit was seen for Precise Deictic gestures when 
referring to visible objects. 

4.2.3 Naturalness. A two-way repeated measures Analysis of Vari-
ance (RM-ANOVA) revealed anecdotal evidence for an effect of 
Gesture (𝐵𝐹10 = 2.253). As shown in Fig. 8, there was not enough 
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Figure 8: Naturalness. a difference between Precise Deictic 
and Abstract Gestures towards visible objects. 
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Figure 9: Understandability. Results show a difference be-
tween Precise Deictic and Abstract Pointing gestures towards 
visible objects. 

evidence to conclusively support or rule out an effect, but the evi-
dence tentatively suggests that if there were one, it would be that 
participants viewed robots that used Precise Deictic gestures as 
more natural (𝑀 = 3.431, 𝑆𝐷 = 0.856) than robots that used Ab-
stract Pointing gestures (𝑀 = 3.093, 𝑆𝐷 = 0.918). 

This RM-ANOVA also revealed very strong evidence for an effect 
of Referent Visibility (𝐵𝐹10 = 54.782). Specifically, participants 
viewed robots as more natural when they were referring to visible 
objects (𝑀 = 3.564, 𝑆𝐷 = 0.768) than when they were referring to 
non-visible objects (𝑀 = 2.961, 𝑆𝐷 = 1.006). 

Finally, this RM-ANOVA revealed extreme evidence in favor of 
an interaction between Gesture and Referent Visibility (𝐵𝐹10 = 
1.949 × 105). Post-hoc Bayesian t-tests revealed that the difference 
in ascriptions of naturalness for Abstract Pointing vs Precise De-
ictic gestures was extreme for gestures to visible objects (𝑀𝐴 = 
3.147, 𝑆𝐷𝐴 = 0.865 vs. 𝑀𝐷 = 3.980, 𝑆𝐷𝐷 = 0.671; 𝐵𝐹10 = 6265.049) 
but that there was moderate evidence against such a difference 
for gestures to non-visible objects (𝑀𝐴 = 3.039, 𝑆𝐷𝐴 = 0.970 vs. 
𝑀𝐷 = 3.039, 𝑆𝐷𝐷 = 0.970; 𝐵𝐹10 = 0.260). These results partially 
support H3: Precise Deictic gestures were perceived as more natural 
when referring to visible objects, but no such benefit was seen for 
Abstract Pointing gestures when referring to non-visible objects. 

4.2.4 Understandability. A two-way repeated measures Analysis 
of Variance (RM-ANOVA) revealed strong evidence for an effect of 
Gesture (𝐵𝐹10 = 19.122). As shown in Fig. 9, participants viewed 
robots that used Precise Deictic gestures as more understandable 
(𝑀 = 3.359, 𝑆𝐷 = 0.9) than robots that used Abstract Pointing 
gestures (𝑀 = 3.035, 𝑆𝐷 = 0.8). 
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This RM-ANOVA also revealed extreme evidence for an effect 
of Referent Visibility (𝐵𝐹10 = 434.379). Specifically, participants 
viewed robots as more understandable when they were referring 
to visible objects (𝑀 = 3.647, 𝑆𝐷 = 0.684) than when they were 
referring to non-visible objects (𝑀 = 2.927, 𝑆𝐷 = 1.016). 

Finally, this RM-ANOVA revealed extreme evidence in favor of 
an interaction between Gesture and Referent Visibility (𝐵𝐹10 = 
6.415 ×107). Specifically, post-hoc Bayesian t-tests revealed that the 
difference in ascriptions of understandability for Abstract Pointing 
vs Precise Deictic gestures was extreme for gestures to visible ob-
jects (𝑀𝐴 = 3.108, 𝑆𝐷𝐴 = 0.840 vs. 𝑀𝐷 = 4.186, 𝑆𝐷𝐷 = 0.527; 
𝐵𝐹10 = 6.159 × 104) but that there was actually moderate ev-
idence against such a difference for gestures to non-visible ob-
jects (𝑀𝐴 = 2.961, 𝑆𝐷𝐴 = 0.960 vs. 𝑀𝐷 = 2.892, 𝑆𝐷𝐷 = 1.072; 
𝐵𝐹10 = 0.194). These results partially support H4: Precise Deictic 
gestures were perceived as more understandable when referring to 
visible objects, but no such benefit was seen for Abstract Pointing 
gestures referring to non-visible objects. 

5 DISCUSSION 

5.1 Abstract Pointing (when Multimodal) is 
More Effective for Non-Visible Objects 

Our first hypothesis was about effectiveness: that Abstract Point-
ing gestures would be more effective in referring to non-visible 
objects, and that Precise Deictic gestures would be more effective 
in referring to visible objects. Our results support both facets of 
this hypothesis. Most participants in the Precise Deictic condition 
(80% vs 60% compared to Abstract Pointing) were able to infer 
that a visible object was being referenced. For non-visible objects, 
Abstract Pointing gestures were more effective but the accuracy 
was only 40% vs 20% compared to Precise Deictic gestures. This 
shows the promise of using Abstract Pointing gestures to refer to 
non-visible objects. The relatively low accuracy of these gestures is 
likely due only to the complete reliance on gesture in this experi-
ment: trying to infer the target of potentially non-visible objects 
from non-verbal cues alone is extremely challenging, both due to 
the ambiguity of non-verbal communication and due to the human 
interpretation bias towards visible objects. This finding aligns with 
work showing the need for verbal explanation by Han et al. [24]. 
In contrast, pairing abstract gestures with spoken language would 
likely lead to acceptable accuracy. Future work should be performed 
to confirm this. Thus, we propose Design Guideline 1: Abstract 
Pointing gestures can be used to help identify non-visible ref-
erents, but should always be accompanied with information 
conveyed through other communication modalities. 

5.2 Abstract Pointing Increases 
Anthropomorphism 

Our second hypothesis was that Abstract Pointing gestures to non-
visible objects would appear more human-like and that Precise 
Deictic gestures to visible objects would appear more human-like. 
Our results only partially support this hypothesis. When made to-
wards non-visible objects, Abstract Pointing gestures were more 
humanlike than Precise Deictic gestures; but for gestures towards 
visible objects, Precise Deictic gestures were no more humanlike 

(and if anything, were less humanlike than Abstract Pointing Ges-
tures). Overall these results suggest that using abstract pointing 
gestures towards non-visible objects may be an effective strategy 
if one wishes to invoke attributions of human characteristics, ac-
tivate familiar interactions, and encourage willingness to inter-
act and accept robot behaviors [36]. And, conversely, the use of 
such gestures should be avoided if one is concerned about over-
anthropomorphization of a robot. As such, we propose Design 
Guideline 2: The use of Abstract pointing gestures to non-
visible objects should be informed in part by designers’ desire 
to encourage or discourage anthropomorphism. 

5.3 Precise Dectic Gestures to Visible Objects 
are More Natural and Understandable 

Our third and fourth hypothesis were that Abstract Pointing ges-
tures would appear more natural (H3) and understandable (H4) 
when referring to non-visible objects and that Precise Deictic ges-
tures would appear more natural (H3) and understandable (H4) 
when referring to visible objects. Our results showed that deictic 
gestures were more natural and understandable when referring 
to visible objects, but that there was no difference between the 
gestures when referring to non-visible objects. As such, we pro-
pose Design Guideline 3: When robots refer to visible objects, 
they should use Precise Deictic gestures, i.e., with direct, and 
sustained use of both deictic gaze and deictic pointing. 

5.4 Limitations and Future Work 
As discussed in Sec 5.1, future work should further investigate the 
efficacy of Abstract Pointing in the context of multimodal referring 
utterances. In addition, future work should address key limitations 
of this experiment. First, while our use of a virtual environment 
helped to provide us with enhanced experimental control, environ-
mental control, and overcome the inherent limitations of today’s 
robotic hardware, future work will ultimately be needed with phys-
ical robots situated in real physical environments. Second, future 
work should explore even larger-scale environments and referents 
that are either farther away yet still visible, or that are much farther 
away not possibly visible. Finally, future work should explore the 
other types of referential gestures from Higger et al. [27]’s taxon-
omy, and how these gestures might be used based on factors other 
than visibility or distance, such as known-ness or uncertainty. 

6 CONCLUSIONS 
In this work, we identified key factors in the human use of different 
types of referring gestures, including Precise Deictic and Abstract 
Pointing gestures. We then investigated robots’ use of Precise De-
ictic and Abstract Pointing gestures in reference to both visible 
and non-visible objects. Our results show that while the benefits of 
each gesture type are reflected through different metrics, there is an 
overall benefit to using Precise Deictic gestures when referencing 
visible objects, and Abstract Pointing gestures (accompanied by 
informative verbal cues) when referring to non-visible objects. 
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